

Update on Mass shifts

S.Burdin, A.Nomerotski, Fermilab, 10/9/2003

Have large sample of VO

- 6M Ks, 1M Lambdas, 2.7M gamma conversions
- Used ~ random set of p14 data, all triggers, L<10 pb-1
- Use custom rootuple created by AATrack package running off TMB in the framework

Will show here

- Ks mass versus radius
- Ks mass versus momentum
- Ks & J/psi mass versus material
- First look at corrections
- Lambdas

Ks mass dependence on decay radius

Low momenta pions: (P<1GeV) High momenta pions: (P>1GeV)

- Higher momentum tracks are less affected
- See next slide re this area

Ks mass vs. radius again

- Small R has some background
 - Use R>4mm

Select Different Zones in SMT

- No bulkheads crossed (zone 1)
- Bulkhead crossed (zones 2a & 2b)

SMT Bulkheads

- Support silicon ladders
- Made of beryllium
- Have integrated cooling

Ks mass

Ks mass dependence on decay radius

- + 3074+-48 MeV for central tracks
- 3076+-64 MeV for bulkhead tracks
- Averaged over everything :sigma = 71 MeV

Both tracks are in bulkhead (Zone 2)

Mass corrections for Ks

- First look at mass corrections
- Should consider at least two effects
 - dEdx in extra material => additional term to E
 - Scale factor for B field => scaling of Pt

Black curve : mass from VO package

Blue curve : corrections = 0

Red curves : E corrected in steps of +-2 MeV

Green curves: Pt scaling in steps of +1%

(caution: black!=blue because used wrong momenta - to be fixed)

Lambda mass

- Mass resolution ~ 3 MeV, almost no mass shift
- Less sensitive because of kinematics, q=101 MeV
- Have few things to understand
 - In AATrack two tracks are considered a Lambda candidate after Ks -> some distributions are sculptured by Ks mass window cut. Will be fixed.

Lambda mass

 Mass vs. P_proton has different behavior than Ks mass. so far a mystery.

Plans

- Accumulate evidence, try to understand it in progress
 - Study mass as function of momentum, decay radius, geometry, type of particle, compare data/MC etc
- Measure necessary B and/or dEdx corrections how to disentangle them?
 - Use J/psi sample : more energetic particles =>
 - ▲ less dependent on dEdx, no hadronic interactions
 - ▲ J/psi mass scales with B (muon mass is small wrt momenta)
 - * Study rad corrections to J/psi peak in MC
 - Study dEdx corrections in MC (in principle GTR propagator should treat it correctly so no corrections are necessary)
 - Study additional material needed to have no slope in the mass dependence versus momenta
 - Declare that B corrections are responsible for the rest of mass discrepancy and scale the B field accordingly
 - Apply to all other resonances (Ks, Ypsilon, D0, Ds) as double check

Plans (cnt'd)

- How to use conversions?
 - ▲ Can have very accurate description of material
 - **▲** Difficulty
 - 1. Depends as Z^2 on material atomic number while dEdx depends as Z
 - 2. How to normalize? CDF for ex used Al cover of drift chamber known with high accuracy for normalization.
- Short term plans
 - Add J/psi & Ypsilons to our VO Rootuple
 - Look at MC
- Longer term
 - Implementation within existing tracking software
 - Understand/improve mass resolutions
 - ▲ S/B ratio for all signals
 - ▲ Important for separation of ypsilons (15,25,...) and other peaks
- Agreed that this work will be coordinated by Tracking group

Image of Tracker from γ -conversions

